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Abstract
1.	 Spatial capture–recapture (SCR) models are commonly used for analysing data 
collected using noninvasive genetic sampling (NGS). Opportunistic NGS often 
leads to detections that do not occur at discrete detector locations. Therefore, 
spatial aggregation of individual detections into fixed detectors (e.g., centre of grid 
cells) is an option to increase computing speed of SCR analyses. However, it may 
reduce precision and accuracy of parameter estimations.

2.	 Using simulations, we explored the impact that spatial aggregation of detections 
has on a trade-off between computing time and parameter precision and bias, 
under a range of biological conditions. We used three different observation mod-
els: the commonly used Poisson and Bernoulli models, as well as a novel way to 
partially aggregate detections (Partially Aggregated Binary model [PAB]) to re-
duce the loss of information after aggregating binary detections. The PAB model 
divides detectors into K subdetectors and models the frequency of subdetectors 
with more than one detection as a binomial response with a sample size of K. 
Finally, we demonstrate the consequences of aggregation and the use of the PAB 
model using NGS data from the monitoring of wolverine (Gulo gulo) in Norway.

3.	 Spatial aggregation of detections, while reducing computation time, does indeed 
incur costs in terms of reduced precision and accuracy, especially for the param-
eters of the detection function. SCR models estimated abundance with a low bias 
(<10%) even at high degree of aggregation, but only for the Poisson and PAB mod-
els. Overall, the cost of aggregation is mitigated when using the Poisson and PAB 
models. At the same level of aggregation, the PAB observation model out-per-
forms the Bernoulli model in terms of accuracy of estimates, while offering the 
benefits of a binary observation model (less assumptions about the underlying 
ecological process) over the count-based model.

4.	 We recommend that detector spacing after aggregation does not exceed 1.5 times 
the scale-parameter of the detection function in order to limit bias. We recommend 
the use of the PAB observation model when performing spatial aggregation of binary 
data as it can mitigate the cost of aggregation, compared to the Bernoulli model.
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1  | INTRODUC TION

Spatially explicit capture–recapture models (SCR; Efford, 2004; 
Borchers & Efford, 2008; Royle & Young, 2008; Royle, Chandler, 
Sollmann, & Gardner, 2014) are rapidly growing in popularity for eco-
logical data analysis. SCR models are commonly used for estimating 
density (Bischof, Brøseth, & Gimenez, 2016; Kéry, Gardner, Stoeckle, 
Weber, & Royle, 2011; Royle, Magoun, Gardner, Valkenburg, & 
Lowell, 2011), but their scope of applications is expanding (Bischof, 
Steyaert, & Kindberg, 2017; Royle, Fuller, & Sutherland, 2018). Like 
nonspatial capture–recapture models (CR), SCR models estimate 
ecological parameters while accounting for imperfect detection of 
individuals. However, SCR models also utilize the information con-
tained in the spatial configuration of detections and nondetections 
to yield spatially explicit estimates of abundance.

At their core, SCR models describe the distribution of latent ac-
tivity centres (AC; centroid of an individual’s activity during the time 
of sampling) of individuals in a population from the spatial configura-
tion of individual detections and nondetections. SCR models couple 
a spatial point process model describing the spatial distribution of 
individual ACs with an observation model that describes the rela-
tionship between detection probability at detectors (see below for 
definition) and the distance from the AC. In SCR, spatial detections 
of individuals can be derived from a multitude of methods, from 
physical capture and marking, to genetic, acoustic or visual/pho-
tographic detections. These detections occur at so-called traps or, 
more generally, detectors. Depending on the data collection meth-
ods, detections may be associated with the point locations of physi-
cal detectors or detection devices, but could also refer to transects, 
irregular or gridded search areas (Efford, Borchers, & Byrom, 2009; 
Efford, Dawson, & Borchers, 2009; Royle, Kéry, & Guélat, 2011; 
Royle et al., 2014).

Spatial capture–recapture surveys, due to their spatial dimen-
sion, yield extensive detection histories (i.e., detections/nondetec-
tions of every individual at every detector). This, in turn, makes the 
analysis of SCR data computationally intensive (e.g., computation 
time), compared with nonspatial CR. This is especially true if sur-
veys cover large areas and/or detections are recorded at high spa-
tial resolution. For example, search-encounter methods (by foot, 
car or some sort of transects) generate detections from uniquely 
identified individuals (e.g., NGS; noninvasive genetic sampling) in a 
continuous space, which may result in large datasets when data are 
maintained at a high spatial resolution. Large SCR datasets might 
also concern users that wish to conduct SCR analysis with several 
thousands of detectors (e.g., camera traps network over large study 
areas). This study was motivated by our own challenge in an ongoing 
large carnivore monitoring programme in Scandinavia, where we aim 
to estimate density of wolves (Canis lupus), bears (Ursus arctos) and 
wolverines (Gulo gulo) across two countries (Norway and Sweden) 
spanning >700,000 km2, using NGS data from several thousand indi-
viduals over >10 years of data collection.

The most straightforward way of coping with such large data 
quantities is to use some form of data summarization through 

spatial aggregation. For example, NGS data collected using search-
encounter surveys result in detection locations in continuous space. 
As an alternative to modeling the continuous space search process, 
it is convenient to define pseudo-detectors to be the centres of grid 
cells of some prescribed size and then associate each detection to 
the closest grid cell centre (i.e., aggregation of detections to grid 
cells, Russell et al., 2012; Bischof, Brøseth, et al., 2016). While ag-
gregation has the benefits of reducing the computation burden, it 
comes at a cost, as some information is lost in the process. When 
aggregating detections over grids, Russell et al. (2012) found that 
estimates of abundance seems to be relatively robust to the choice 
of grid cell size. This suggests that one could use a relatively coarse 
grid cell size, thereby reducing the number of detectors and increas-
ing computing speed. From a design standpoint, there are general 
guidelines to keep detector spacing below a certain level relative to 
the home range size of studied species (see Royle et al., 2014; Sun, 
Fuller, & Royle, 2014). However, to our knowledge, there exists no 
guidelines to aggregate detections based on a formal quantification 
of the costs and benefits of aggregation in SCR analyses.

The two most common observation models used in SCR are the 
Poisson (i.e., count data) and the Bernoulli (i.e., binary data) (Bischof 
et al., 2017; Blanc, Marboutin, Gatti, & Gimenez, 2013; Muneza et al., 
2017; Royle et al., 2014). The choice of model mostly depends on 
our understanding of the underlying observation process (Dawson & 
Efford, 2009; Royle et al., 2014). For example, when it is possible for 
the number of detections at a detector per occasion to be >1, then 
a Poisson model (or negative binomial) may be appropriate (Royle 
et al., 2014). Therefore, the type of data and the choice of observa-
tion model dictate the outcome of spatial aggregation of individual 
detections and the amount of original information preserved. Count 
models, such as Poisson models for detection frequency data, per-
mit summing of individual detections across spatial units without 
discarding any detections. However, spatial aggregation for binary 
models is liable to result in a loss of information as all but the first 
detection of an individual within a given spatial unit are ignored.

This study has two objectives: (a) to provide quantitative infor-
mation about the consequences of spatially aggregating individual 
detections over detectors, leading to practical guidelines for users, 
and (b) to introduce a novel approach—the partially aggregated bi-
nary (PAB) observation model—which reduces the loss of informa-
tion arising from simple spatial aggregation of binary data through 
the use of a Binomial process. Although the possibility of spatially 
aggregating detector-level detections to form a Binomial response 
has been mentioned earlier (Efford, Borchers, & Mowat, 2013; 
Efford, Dawson, et al., 2009), to our knowledge it has neither been 
formalized, nor its costs and benefits formally quantified.

Using simulations, we systematically tested the effect of increas-
ing spatial aggregation on parameter estimates using the Poisson 
(counts of detections of individuals), the Bernoulli (binary detections 
of individuals), and the PAB observation models. We simulated de-
tections of individuals at a fine spatial scale (i.e., with a high number 
of detectors relative to home range size) and then aggregated detec-
tions over increasingly larger grid cells, thereby reducing the number 
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of detectors (Figure 1). This allowed us to mimic the process that the 
user may follow in order to balance spatial resolution and comput-
ing speed. We then fitted SCR models to each simulated scenario 
and evaluated their performance (precision and bias), as well as their 
use of the available information and computational speed. Finally, 
we showcase the application of the PAB model with an empirical 
example: density estimation using noninvasive genetic sampling of 
the wolverine in Norway.

2  | MATERIAL S AND METHODS

2.1 | Basic spatial capture–recapture model

The observation process describes the relationship between an in-
dividual’s detection probability at a given detector and the distance 
 Di,j between detector j and individual i’s AC (latent variable). In our 
example, we considered that a detector represents any location at 
which an individual can be detected. We assumed that ACs were uni-
formly distributed within the region under study. A commonly used 
detection function is the half-normal, describing the probability pi,j 
of detecting individual i at detector j

where p0 is the expected detection probability at the AC loca-
tion. The scale parameter σ can be directly linked to home range 
size (Royle et al., 2014) in cases where the shape of the detection 
function arises from the utilization distribution (home range) of 
the study organism. More generally, σ is related to the extent 
of space used over the period of study. In addition, σ could also 
determine the distance from which acoustic signals can be de-
tected (Dawson & Efford, 2009). We assumed homogeneity of 
the parameters of the detection function across individuals and 
the region.

Binary detections (detection: y = 1; nondetection: y = 0) of in-
dividuals at any given detector then follow a Bernoulli distribution 
with probability pi,j

Counts of detections can alternatively be modelled with a 
Poisson distribution:

(1)pi,j = p0. exp

(

−D2
i,j

2σ2

)

,

(2)yi,j ∼ Bernoulli (pi,j)

F IGURE  1 Conceptualization of spatial aggregation of detectors (represented by centroids of grid cell) with the application of a larger 
regular grid (aggregated grid/primary grid) to the original gridded detector (original grid). It illustrates the spatial detection of one individual 
(filled black diamond: activity centre) after applying Equation 7. Original detection histories before spatial aggregation are represented in the 
first column (No (1)), with increasing aggregation (4, 9, 16, and 36 cells) from left to right. The three different observation models considered 
in the analysis are shown in rows: Poisson for count (top), Bernoulli (middle) and partially aggregated binary (PAB, bottom) for binary data. 
The Bernoulli and PAB models are identical in the absence of aggregation. The PAB model allows for spatial aggregation of binary data 
without complete loss of all individual detection events at the original grid level. For illustration, the number of individual detections retained 
at the same detector (the 15th detector) is shown for each model type at maximum aggregation
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where λi,j, the mean number of detections of individual i at detector 
j, is also described using the half-normal detection function:

where λ0 is the expected number of detections at the AC.

2.2 | The partially aggregated binary observation  
model

Spatial capture–recapture studies have used Binomial observation 
models as an approach to accommodate multiple temporal binary 
capture occasions (Efford, 2011; Royle, Karanth, Gopalaswamy, & 
Kumar, 2009). Using PAB, we adapted this approach to space by 
converting original detectors into multiple spatial binary detec-
tors (K ) associated with a new aggregated detector grid. Spatial 
aggregation of binary detection data leads to omission of detec-
tions, if the outcome again is to follow a Bernoulli distribution. 
This is because any pattern of detections and nondetections at 
original detectors is reduced to a single binary response during 
aggregation. In our example, detectors are represented in the 
form of grid cells but they could be defined as any other types 
of detectors. With the PAB observation model, each primary 
grid cell (aggregated detector) is subdivided into K subgrid cells 
(Figure 1). Then the response, the frequency of subgrid cells with 
at least 1 detection, is modelled as a binomial response based on 
a sample size of K (Figure 1, Equation 5), where K represents the 
number of subgrid cells within the primary grid cell.

This partial aggregation may be an efficient alternative to an aggre-
gation following a Bernoulli model because it reduces the number of 
detectors while retaining more information about individual detec-
tions at each aggregated detector.

2.3 | Simulations

2.3.1 | SCR simulations

We simulated SCR data on a region S represented by a square pol-
ygon divided into 24 × 24 equal sized grid cells (Figure 2). For the 
purposes of the simulations, the centre of each of the resulting 576 
cells represented a detector, with a detector spacing of 1 distance 
unit. We also considered a buffer around the polygon equivalent 
to two times σ to yield unbiased density estimates (Figure 2, Royle 
et al., 2014). The simulated population was demographically and ge-
ographically closed (i.e., no birth, death, immigration, or emigration 
during the sampling period).

We simulated a fixed number N of individuals. The location of 
their activity centres (ACs), si with geographic coordinates si = (sxi, syi)  

for each individual i (i = 1, …, N) of the population, were uniformly 
and randomly distributed over the region S.

To simulate spatially explicit detections of individuals, we set the 
capture probability of each individual and each detector as a func-
tion of the distance between its activity centre and the detectors 
using a half-normal detection function (Equation 1). We then created 
detection histories y for individual i at detector j by sampling from a 
Poisson distribution for a single temporal occasion.

2.3.2 | Spatial aggregation

Once individual detections were obtained at the original high-
resolution detector grid (original grid, Figure 1 top-left panel), we 
aggregated individual detections over a larger spatial unit by ag-
gregating detectors (i.e., cells) over 4, 9, 16, and 36 cells of the 
original grid. This resulted in new grids (aggregated grids) with a cor-
responding detector spacing of 2, 3, 4, and 6 distance units which 

(3)yi,j∼Poisson (λi,j),

(4)λi,j=λ0 ⋅exp

(

−D2
i,j

2σ2

)

,

(5)yi,j ∼ Binomial (pi,j,K)
(6)si∼Uniform

(

S
)

(7)yi,j∼Poisson

(

λ0 ⋅exp

(

−D2
i,j

2σ2

))

F IGURE  2 Location of individual activity centres (AC; coloured 
points) placed randomly within the habitat. The white polygon 
represents the area covered by detector grid (grey points) and the 
grey polygon the buffer. The Poisson observation model leads to 
realized counts of individual detection throughout the detector 
grid following the half-normal detection function (Equation 7). 
Detections are connected with the respective individual AC 
with colour-coded lines; ACs not linked to segments represent 
undetected individuals
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exponentially decreased the number of detectors from 576 at the 
original grid level to 144, 64, 36, and 16 detectors (Figure 1).

We then aggregated detections consistently with the obser-
vation process represented in Figure 1: (a) for each individual, we 
summed all detections that occurred within aggregated grid cells for 
the Poisson model (Figure 1, top row); (b) we recorded whether an 
individual was detected at least once within an aggregated grid cell 
for the application of the Bernoulli observation model (also called 
“proximity detector” model (Efford, 2017), Figure 1, middle row); 
and (c) we introduced a novel way of aggregating detections for the 
application the PAB observation model (Figure 1, bottom row). The 
binary detections data at each of the original grid cells were treated 
as the outcomes of different Bernoulli trials, yielding a binomially 
distributed response at the aggregated grid level. The number of 
subgrids (K) was set as the total number of original grid cells con-
tained in each aggregated grid cell (Figure 1).

We summed the number of detections over aggregated grid cells 
(n.cells) when aggregating the capture history for the Poisson model. 
Therefore, the mean of the Poisson distribution of λ0 becomes a 
function of the number of aggregated cells after aggregation. We 
estimated the “effective” λ0 as n.cells* λ0, so λ0 can be compared 
among aggregation level. For the simulation sets without spatial ag-
gregation, n.cells was set to 1. Additionally, because our “raw” data 
were simulated using a Poisson distribution (counts of detections), 
we used a link from the Poisson model to the Bernoulli model (Royle 
et al., 2014) to obtain the probability of observing a count greater 
than 0 for the Bernoulli and PAB models:

2.3.3 | Simulation scenarios

The scale parameter σ was set to 2 spatial grid units for all individu-
als, twice the minimum distance between two detectors (detector 
spacing) in the highest detector grid resolution (original grid). To 
evaluate the response of SCR models to different combinations of 
population and survey characteristics, we simulated populations 
characterized by a low (density = 0.05 per cell; N = 50) and high den-
sity of individuals per grid cell (density = 0.1 per cell, N = 100). We 
used 0.1 and 0.25 as baseline expected number of detections λ0 for 
all detectors to yield a lower (~60%) and higher (~80%) proportion 
of N being detected at least once. At the original scale, aggregation 
was set to 4, 9, 16, and 36 cells which corresponded to 1, 1.5, 2, and 
3 times σ (Figure 1).

2.4 | Data augmentation

We used data augmentation (Royle, Dorazio, & Link, 2007) to ob-
tain an estimate of abundance (Kéry & Schaub, 2011). We aug-
mented the dataset, so that the sum of the number of detected 
and augmented individuals was always equal to five times the 
number of simulated individuals. We associated a latent indicator 

zi to every individual that reflected the probability ψ of an indi-
vidual to be a member of the population. We defined zi as a bi-
nary variable equal to 1 when an individual was a member of the 
population and 0 otherwise. We then obtained abundance (N) by 
summing up vector z.

2.5 | Model fitting

We fitted SCR models in a Bayesian framework using Markov chain 
Monte Carlo (MCMC) to 100 simulations for each combination of 
parameters. We implemented all analyses using JAGS (Plummer, 
2003) with the package rjags (Plummer, 2016) in R version 3.3.3 (R 
Core Team, 2017). We ran 3,000 iterations in three chains after an 
adaptive phase of 1,000 iterations and thinned, so that every third 
iteration was retained. Models were considered to have reached 
convergence when the Gelman–Rubin diagnostic value gelman.diag 
function in coda package (Brooks & Gelman, 1998; Gelman & Rubin, 
1992; Plummer, Best, Cowles, & Vines, 2006) for all parameters fell 
below 1.1 for ≥1,000 consecutive iterations. JAGS codes for the dif-
ferent SCR models and simulations used are provided in Supporting 
Information S1 and S2. Priors and initial values are listed in Supporting 
Information S3, Table S3.1.

2.6 | Evaluating the performance of the models

We evaluated the performance of each SCR model in estimating 
abundance (N) and the parameters of the detection function (σ and 
λ0). We quantified the relative bias (RB=

1

θn

∑n

i=1
(θ̂i−θ)) and the pre-

cision using the coefficient of variation (CV=
SD(θ̂)

θ̂

×100) (Walther & 
Moore, 2005), where n is the number of iterations, SD is the stand-
ard deviation, θ is the true and θ̂ is the estimate of the parameter 
obtained from MCMC. In addition, we calculated the 95% cred-
ible interval coverage as the percentage of simulations where the  
credible interval contained the true value. As a measure of conver-
gence speed, we recorded the average number of iterations follow-
ing the adaptive phase after which the Gelman–Rubin diagnostic 
value fell below 1.1 for ≥1,000 consecutive iterations. To quantify 
computing time for each scenario, we ran 10 iterations for 20 dif-
ferent simulations of each scenario on the same computer (Intel(R) 
Core(TM) i7-7700K CPU 4.20GHz with 62GB of ram).

2.7 | Empirical case study: The wolverines

2.7.1 | Data

We used wolverine fecal and hair samples collected by 26 differ-
ent observers from the State Nature Inspectorate in Troms County 
(20,300 km2) in Northern Norway. For safety reasons, observers 
work in pairs when snow tracking wolverines with snowmobile or 
on cross-country ski in the mountains in wintertime. Observers may 
search the same areas multiple times per winter, but areas searched 
do not cover the entire county. A total trail length of approximately 
16,000 km was searched between February and May 2012 as a 

(8)pi,j
(

yi,j>0
)

=1−exp (−λi,j)
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part of the Norwegian Large Predator Monitoring Program. Genetic 
analysis was performed on all collected samples, and DNA was ex-
tracted and individuals identified using microsatellite genotyping 
(see Flagstad et al., 2004; Bischof, Gregersen, Brøseth, Ellegren, & 
Flagstad, 2016 for a complete description of the genetic analysis). 
As a result, the genetic ID and sex of individual wolverines, as well 
as spatial location of the detections were known. We used 97 (1 hair, 
96 scats) and 86 (3 hair, 83 scats) detections of 44 and 27 different 
females and males, respectively (Figure 3a). We applied a Bernoulli 
and a PAB observation model while spatially aggregating the detec-
tions over grids of different coarseness (Figure 1). We started with 
an original grid of 4,551 detectors (i.e., searched cell centre) spaced 
every 2 km and then increased detector spacing to 4, 6, 8, 12, 14, 
and 16 km, which resulted in aggregations of detections over 4, 9, 
16, 36, 49, and 64 original grid cells and led to 1,767, 994, 658, 352, 
280, and 233 detectors, respectively (Figure 3b). During field col-
lection, the coordinates of all search track logs were recorded with 
GPS-receivers. We considered detector grid cells that intersected 
a search track as detectors and as active subgrid cell (K) for the 
PAB models. We used a binary observation model as the basis in 
the empirical analysis, instead of the Poisson observation model, as 
the exact process by which detections accumulate may be unknown 
during noninvasive genetic sampling studies. In particular, scat depo-
sition for many species is not likely to be independent and the binary 
observation model avoids having to specify a model for noninde-
pendence of detection events. In such cases the binary observation 
model is the preferred choice of observation model (Royle et al., 

2014), as all but the first detection are discarded. We therefore did 
not use Equation 8 and estimated p0 instead of λ0.

2.7.2 | Modelling

Because male wolverines tend to have larger home ranges than 
females (Bischof, Gregersen, et al., 2016; Persson, Wedholm, & 
Segerström, 2010), we fitted separate models for males and females, 
with a sex-specific buffer of 17 km for males and 10 km for females 
(i.e., approximately 2σ, as revealed by preliminary analyses). Using 
the PAB model, we could record the number of active original grid 
cells K for each aggregated grid cell. We ran 5,000 iterations of three 
chains after an adaptive phase of 1,000 iterations with a thinning 
rate of three. We considered parameter estimates from the Bernoulli 
model at the original grid cell size (i.e., high resolution) as the ref-
erence estimates. We then explored differences between mean 
parameter estimates and confidence intervals provided by the dif-
ferent SCR models at different level of aggregation. As during the 
simulations, we recorded convergence, computing speed and num-
ber of detections associated with the Bernoulli and PAB models.

3  | RESULTS

3.1 | Simulations

We ran 5,600 different models corresponding to 56 unique simu-
lated scenarios. All models converged and 1,000 iterations were 

F IGURE  3  (a) Representation of the study area (within white borders; Troms, Norway) and noninvasive genetic samples from wolverines 
collected in 2012 (dots, red = female, blue = male) used to compute spatial capture–recapture (SCR) models. Grey lines represent search-
tracks. (b) Configuration of detectors after different degrees of spatial aggregation. Aggregation 1 shows the detectors at the original grid 
level (detector spacing = 2 km; Number of detector = 4,551). Aggregation 16 and 64 shows detectors after aggregating grids over 16 and 64 
original grid cells, and corresponds to detector spacing of 8 (658 detectors) and 16 km (233 detectors), respectively. (c) Estimated average 
density maps of female wolverines per 25km2 at the original grid cell size obtained using SCR model (Aggregation1; Bernoulli) and after 
aggregating over 16 and 64 original grid cells using the Bernoulli and partially aggregated binary models. The density estimates presented 
for wolverines in Troms must be interpreted with caution, as our SCR models represent a strong simplification of the reality
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sufficient (Gelman–Rubin <1.1) to obtain convergence for 99.9% of 
the models.

3.1.1 | Parameters of the detection function (σ, λ0)

Regardless of the type of observation model used, spatial aggre-
gation of detections led to overestimation of σ and underestima-
tion of λ0. Aggregation also led to a decrease of the precision and 
coverage (Figure 4, Supporting Information S3, Table S3.2.A) but 
the magnitude and rate at which bias increased with aggregation 
was larger for the Bernoulli compared to the Poisson and PAB 
models (Figure 4, Supporting Information S3, Table S3.2.A). At 
large population size (N = 100) and high detectability (λ0 = 0.25), 
the aggregation of detections over nine original cells and the use 
of the Bernoulli model caused a relative bias in σ that was about 
three times larger for the Bernoulli (0.27; SD = 0.03) compared to 
the Poisson (0.09; SD = 0.04) and PAB models (0.08; SD = 0.03; 
Supporting Information S3, Table S3.2.A). We observed the same 

pattern for the estimates of λ0 where aggregation over nine original 
cells led to about four times larger (negative) relative bias. While 
precision of σ and λ0 estimates (CV) was relatively constant with 
aggregation for the Poisson and PAB models, it increased exponen-
tially for the Bernoulli model (Figure 4, Supporting Information S3, 
Table S3.2.A).

3.1.2 | Abundance (N)

Spatial capture–recapture models estimated N with no major bias 
and imprecision after aggregation when using the Poisson and 
PAB observation models (RB ≤ 0.03; CV ≤ 6; Figure 4, Supporting 
Information S3, Table S3.2.A). However, aggregation caused in-
creased relative bias and decreased precision of N for the Bernoulli 
model. Relative bias in N was 13–26 times larger for the Bernoulli 
(RB = 0.26; SD = 0.06) compared to Poisson (RB = 0.01; SD = 0.06) 
and PAB models (RB = 0.02; SD = 0.06) when aggregating detections 
over 36 original cells.

F IGURE  4 Violins plots representing the relative bias (top panels) and CV (lower panels) for σ, N, and λ0 resulting from different levels 
of spatial aggregation of detections in spatial capture–recapture for N = 100 and λ0 = 0.25. Relative width of the violins corresponds to 
the posterior density and white dots indicate the median of the posterior. Spatial aggregation was performed over 4, 9, 16, and 36 original 
grid cells and different types of data aggregation were performed to follow a Poisson, Bernoulli and partially aggregated binary (PAB) 
observation models. We do not show PAB violins for aggregation 1 because it is identical to the Bernoulli at aggregation 1
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3.1.3 | Computation speed and number of 
detections used

Computing time required for 10 iterations differed slightly between  
different types of models (Figure 5). However, regardless of the ob-
servation model, the time needed decreased exponentially when 
aggregating detectors (Figure 5). For example, on our computer, it 
took on average 2.15 min to run 10 iterations for the Poisson model 
(N = 100, λ0 = 0.25) at the original grid level (576 detectors), while it 
was about five times faster (0.47 min) when aggregating detections 
over four grid cells (144 detectors). The Poisson and PAB observation 
models retained more detection events after aggregation (Figure 5).

3.1.4 | Scenarios

We observed similar patterns among all simulation scenarios. 
However, bias was higher at lower detection rates, and this pat-
tern was especially pronounced for estimates of N. Precision de-
creased with lower detectability and when population size was 
low (Figure 4, Supporting Information S3, Tables S3.2.A–D and S4,  
Figures S4.1.A-C and  S4.2).

3.2 | The wolverine

A maximum of 1,024 iterations were sufficient to obtain conver-
gence for all models. Akin to the simulation results and despite large 
confidence intervals, aggregation increased the σ estimates for wol-
verines (Figure 6, Supporting Information S3, Table S3.3). The in-
crease in estimated σ with aggregation was less pronounced for the 
PAB compared to the Bernoulli model and stronger for females com-
pared to males (Figure 6, Supporting Information S3, Table S3.3). At 
the original grid cell size, σ for females was estimated to be 3.73 km 
with a 95% CI (3.17–4.44) that overlapped with the mean estimates 

obtained after aggregating detections over 64 cells for the PAB 
(4.38; 95% CI = 3.71–5.24) but not for the Bernoulli model (5.18; 
95% CI = 4.05–6.66). N estimates had large uncertainty but were 
more stable with aggregation for males than for females (Figure 6, 
Supporting Information S3, Table S3.3).

4  | DISCUSSION

Data aggregation can significantly reduce computation time of 
SCR models but, as our study demonstrates, this comes at a cost. 
Decreasing spatial resolution of input data leads SCR models to esti-
mate parameters with reduced precision and increased bias in cases 
where the detections are modelled as the result of a Poisson process 
and models that use a Bernoulli observation process. The increase 
in bias with coarser input detector grids is particularly conspicuous 
for the latter type of model, presumably because spatial aggregation 
of detectors can lead to a serious loss of information (i.e., individual 
detections).

Although SCR studies have used Binomial observation models as 
an approach to accommodate for multiple temporal binary capture 
occasions (Efford, 2011; Royle et al., 2009), the PAB model is, to our 
knowledge, the first application of the binomial model to space as it 
converts original detectors into multiple spatial binary detectors (K) 
associated with a new aggregated detector grid. Spatial aggregation 
of detections to fit a PAB observation model offers a practical solu-
tion to make greater use of the available data. It allows aggregation 
of the spatial process across a coarser grid (i.e., detectors), yet uti-
lizing individual detections at the original detector level. We have 
also shown a real-life application of aggregation of detections, and 
the benefits of using the PAB observation model, in terms of infor-
mation used and computation speed, to estimate population density 
and home range size of a rare and elusive species, the wolverine.

F IGURE  5 Number of detections 
events retained (violins) and average 
computing time (bars) when using 
the Poisson, Bernoulli and partially 
aggregated binary (PAB) models after 
different degrees of spatial aggregation of 
detections for the simulated data with a 
large population size (N = 100) and a high 
detectability (λ0 = 0.25). Computing time 
in minutes represents average computing 
time (20 repetitions) necessary to run 10 
iterations
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F IGURE  6 Empirical investigation of the effects of spatial aggregation of detections for noninvasive genetic sampling data from 
wolverines in Troms County, Norway 2012. Outcomes of spatial capture–recapture (SCR) analysis of spatially aggregating wolverine 
detections data over 4, 9, 16, 36, 49 and 64 cells of the original detector grid (aggregation = 1 corresponds to original grid resolution of 
2 × 2 km2 cell size). SCR models were fitted for Bernoulli and partially aggregated binary observation models (PAB). (a) Violin plots with 
posterior distributions of the scale parameter of the detection function (σ) for males (blue) and females (pink). (b) Violin plots of posterior 
estimates of abundance within the Troms study area and excluding the buffer area (Figure 3). Relative widths of the violins correspond to 
the posterior density and white dots indicate the median of the posterior. Horizontal lines represent model estimates obtained for the model 
without aggregation used as a reference. We do not show PAB violins for aggregation 1 because it is identical to the Bernoulli at aggregation 
1. (c) The vertical bars shows the average time in minutes necessary to compute 10 iterations. The dotted line shows the number of 
detections utilized by each model and at a given level of aggregation. The abundance estimates presented for wolverines in Troms must be 
interpreted with caution, as our spatial capture–recapture models represent a strong simplification of reality
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4.1 | Aggregation

Ideally, spatial aggregation of detections would not be necessary 
because SCR analysis could use information at its original scale 
and contents. However, sampling methods such as NGS, can pro-
duce data in such quantities and recorded at such a fine spatial 
scale that some kind of data aggregation of detections within grids 
might be necessary (Russell et al., 2012 but see Royle, Kéry, et al., 
2011). Datasets intended for SCR analysis may have large spatial 
and temporal extent, therefore reducing the number of detec-
tors through aggregation is an option to cut down on computing 
times. The need for computationally efficient alternatives may be 
particularly important as the complexity of SCR models increases, 
such as open population SCR models (Bischof, Brøseth, et al., 
2016; Chandler & Clark, 2014).

Spatial aggregation of detections leads to projection of the true 
location of a detection to the nearest aggregated detector. This can 
result in a loss of spatial information (coarser resolution of detections) 
and potentially a loss of information about detections themselves, es-
pecially if a binary observation model is used. Regardless of the type 
of observation model used, aggregating detections over larger spatial 
units leads to overestimation of the observed area used by animals 
(Marboutin, Pruszek, Calenge, & Duchamp, 2011) and results in an 
overestimation of the scale parameter (σ) of SCR models. It also leads 
to underestimation of the baseline detection probability (λ0).

After aggregation, SCR models estimated parameters with most 
severe bias for the Bernoulli observation model. Here, aggregation 
led to both loss of spatial resolution and detections (Figure 1). This 
loss of information translates into pronounced overestimation and 
imprecision of home range size (σ) and population size (N) estimated 
by the model. Although still conspicuous, the consequences of de-
tector aggregation on the parameters of the detection function was 
less pronounced for the Poisson and PAB observation models. The 
choice of observation model was particularly critical for modulating 
the effect of aggregation on estimates of abundance. Relative bias 
remained low (<5%) for both the Poisson and PAB observation mod-
els, even at moderate and severe levels of aggregation.

The cost of spatial aggregation of detection can be mitigated by 
the choice of observation model. As demonstrated here, both the 
Poisson and PAB observation models outperformed the Bernoulli 
model with aggregation. The binary observation model has been 
highlighted as the model generally favoured by Royle et al. (2014), 
even when the sampling scheme produces detection frequencies 
(e.g., number of scats from an individual found at a location). One 
of the main reason for this choice is that repeated detections over 
short time intervals might not always be the result of independent 
detection events. Similarly, the process of local scat deposition 
might not always be the outcome of space usage but likely the out-
come of more complex behaviors (Royle et al., 2014). Because the 
PAB model also uses binary detection data, we could demonstrate 
its use to analyse our noninvasive genetic samples from wolverines. 
Indeed, the PAB model is a natural extension of the Bernoulli model 
since it makes use of more of the raw data and use binary detections.

One of the strengths of SCR models over nonspatial CR models 
is the ability to yield spatially explicit predictions of abundance—
density surfaces—for a study region. Although, estimates of overall 
abundance remained relatively unaffected by aggregation, at least 
for the Poisson and PAB observation models, the bias in the pa-
rameters of the detection function (σ, λ0) suggests that high spatial 
aggregation of detectors may noticeably impact the degree of cor-
respondence between predicted density surfaces and the true dis-
tribution of activity centres (Figure 3c and Supporting Information 
S5, Table S5.1).

4.2 | Recommendations

Our results suggest that when possible, the Poisson and PAB mod-
els should be favoured over the Bernoulli model when performing 
spatial aggregation. Using the PAB and Poisson models, positive bias 
in σ remains below an acceptable level (<10%) when spatial aggrega-
tion does not exceed areas larger than 1.5 times the σ of the studied 
species. However, positive bias in abundance (N) remains below an 
acceptable rate (<10%) even at high level of aggregation (up to three 
times σ). Our results also suggest that an overestimation and higher 
uncertainty in N are expected in study systems where individual de-
tection probability is low (i.e., <60% of N detected), as it is often the 
case for elusive and/or rare species.

During field sampling, we recommend recording detections and 
search effort at the finest possible spatial resolution. While a large 
part of this fine scale information is lost after aggregation using the 
Poisson and the Bernoulli models, we can still make use of it with 
the PAB model. In our empirical example, we could account for the 
search effort in each grid, by using the number of original grid cells 
searched for each aggregated grid cell as a sample of size K in the 
binomial model (Equation 5). This can help account for heterogene-
ity in search effort that would otherwise be lost when aggregating 
over larger grid cells. We suggest that original grid resolution of the 
PAB model can be as high as desired, because a high resolution will 
mitigate the loss of detection with aggregation. However, according 
to the characteristics of the study-system the user should make sure 
that the resolution of the original grid cells is large enough to ac-
count for independence in the detection events, as explained above.

Determining the appropriate detector configuration before field 
sampling is essential in order to obtain reliable estimates of density 
using SCR models (Sollmann, Gardner, & Belant, 2012; Sun et al., 
2014). However, due to constraints in field data collection or the 
type of sampling used (e.g., opportunistic sampling), detector arrays 
might not always be regularly spaced such as in our simulations. For 
our empirical study on wolverines, we tested the effect of spatially 
aggregating detections from irregularly located detectors (i.e., based 
on search tracks). Using this particular example, we demonstrated 
the cost of spatial aggregation on parameter estimation for individ-
uals having small (female) and large (male) home range size. The ef-
fect of aggregation on σ was stronger for individuals having a smaller 
home range size. Accordingly, abundance estimates for males were 
more stable with aggregation than estimates obtained for females. 
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However, it is important to note that comparing abundance esti-
mates when aggregating irregularly searched grids is challenging 
because aggregation tends to artificially increase the area covered 
by detectors (Figure 3b). We therefore recommend additional sim-
ulation studies to explore the effect of aggregation under different 
detector configuration scenarios or increased realism on the ecolog-
ical and observation models (e.g., individual heterogeneity detection 
parameters).

5  | CONCLUSIONS

Although the computational burden of SCR is still substantial, our 
results show that spatially aggregating detections can be a relatively 
easy way to significantly reduce computational burden. At the same 
time, aggregating too coarsely, relative to the focal species’ home 
range size, could lead to unacceptable compromises in terms of pa-
rameter precision and accuracy. We advise against performing large 
spatial aggregation using the Bernoulli model, as it can lead to highly 
biased parameter estimates, especially when detectability is low and 
few individual detections are available. On the other hand, the PAB 
model introduced here, can help investigators achieve the benefits of 
spatial aggregation in terms of computation speed, while mitigating 
the loss in parameter precision and accuracy associated with aggre-
gation of binary data. Spatial aggregation could be especially helpful 
for studies with a large spatial extent and for complex models.
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